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ABSTRACT

This report presents the results of a study on the monotonic and cyclic stress-strain behavior of
quartz sands and other granular media. Random arrays of elastic rough spheres are used to
represent the medium in the numerical simulations which utilize one, two and three sizes of
spheres. In all cases the spherical grains are assigned the properties of quartz. Results from a
2D array of 531 grains and from a 3D array of 395 particles are displayed and discussed.

A rigorous representation of granular stress-strain response at small strains and during cyclic
loading requires the correct modelling of the force-displacement behavior at the contact between
two grains. This was achieved through a numerical solution of the (Hertz-Mindlin) contact
problem between two spheres developed by the authors which uses the theory of plasticity and
kinematic hardening to describe the phenomenon. The discrete element finite difference method
proposed by Cundall and Strack is used to calculate the interactions between particles including
geometric rearrangement and formation of new contacts. A periodic space soluticn is
implemented to avoid undesirable boundary effects. All these aspects were incorporated by the
authors into program CONBAL-P (CONtact truBAL-Parallel). Because of the large number of
contacts, the complex nonlinear character of the contact law, and the explicit nature of the finite
difference scheme, a supercomputer is required to run CONBAL-P, which has * zen optimized
for a vector and parallel environment.

The results discussed in the paper focus on identifying the micromechanical phenomena
responsible for the motion and distortion of the yield loci of a granular medium in stress space
during shear loading that were observed in the laboratory experiments of Volume II. The array
is first isotropically compressed and then is sheared at constant mean stress. The shear loading
consists of monotonically prestraining the medium to a predetermined level which is followed
by unloading and probing in different directions to establish the current size and shape of a yield
locus. It has been found that the yield locus distorts in the direction of loading in a way similar
to that observed in the laboratory experiments on glass beads. This is in contrast to the current
assumption for soils that the yield locus translates without distortion. These results are relevant
to the formulation of constitutive relation for granular soil since they indicate that the anisotropic
fabric which develops during loading needs to be modelled in order to capture the macroscopic
phenomena. The simulations also provide a wealth of statistical information which is used to
correlate the macroscopic stress-strain response observed in the laboratory with micromechanical
phenomena at the particle contact level.




1. INTRODUCTION

1.1 General

Over the past 30 years considerable attention has been given to the development of constitutive
laws for engineering materials (Hill 1950, Prager 1955, Mroz 1967, Dafalias and Popov 1976,
Drucker and Palgen 1981, Yen and Eisenberg 1987). Among other formulations, the existing
models are based on the theories of elasticity, hypoelasticity, plasticity and viscoplasticity.
Despite the large number of models, there is no consensus yet within the scientific research
community on the best approach. However, the models based on the theory of plasticity or
viscoplasticity appear to be most promising. Especially critical is the need for a constitutive
relation for soils required for analyses of onshore and offshore structures and their foundations,
as well as earth structures, subjected to a variety of natural and man-made static and dynamic
loading environments. Soil behavior is more complex than that of other materials due to its
particulate nature, which makes it pressure-dependent and nonlinear inelastic even at small
strains. A large number of models has been proposed for soils based on the theory of plasticity,
including those of DiMaggio and Sandler (1971), Baladi and Rohani (1979), Lade (1977),
Prevost (1978, 1985), Dafalias and Herrmann (1982). In these models, the total strain is equal to
the sum of the elastic and plastic strain increments, de; = de*, + de#; with these increments being
rate independent. A variety of associative and non-associative flow rules have been proposed for
the plastic strain increment, of the form:

ag
de? = —_—
¥ do, )

where A is a coefficient of proportionality and g(c,) is the plastic potential function, which may
or may not coincide with the yield function, f(c,), at which plastic strains develop. It is typically
assumed that these yield surfaces (loci) translate in stress space without distortion (kinematic
strain hardening), sometimes increasing or decreasing in size (isotropic strain hardening).

The limitation of these models is that they are phenomenological. They have been typically
developed from a manageable mathematical formulation, and they have been calibrated and
modified by interpreting macroscopic experimental results, while ignoring the underlying
micromechanical phenomena. As a result, the existing plasticity models for soils are in need for
constant refinement when needed for cases very different from the one the model was originally
developed and calibrated for.




The current situation in metal plasticity is quite different. Although the modelling of the
nonlinear behavior of metals started on a similar phenomenological basis, there has been a shift
in the last 20 years or so toward formulating the metal response with due consideration of
micromechanical principles (Budiansky and Wu 1962, Lin and Ito 1965, 1966). Recently, this
has been enhanced by specific experiments and micromechanical (transmission electron
microscopy - TEM) measurements (Stout et al. 1985, Helling et al. 1986). The situation is
analogous in the modelling of more complex composite materials, where experiments and
micromechanical analytical simulations are combined to create the corresponding constitutive
law (Dvorak 1987, Dvorak et al. 1988).

A similar effort in soils has begun at RPI by the authors, in which a new constitutive law for
granular media is being developed which evolves from several micromechanical studies,
including numerical simulations of 2-D and 3-D random arrays of spheres and laboratory
experiments on glass beads (Petrakis and Dobry 1989). This paper presents the results of 2 and
3-D simulations of the mechanical behavior of random assemblages of rough, elastic spheres.

1.2 Studies on Polycrystalline Aggregates

Starting in the 1950's, researchers have simulated the elastic-plastic, stress-strain behavior of
polycrystalline aggregates through analytical, semi-analytical, and numerical micromechanical
techniques (Hershey 1954, Budiansky and Wu 1962, Lin and Ito 1965, 1966, Hill 1967, Canova
et al. 1985). This micromechanical work has not supported the continuum mechanics
hypotheses of either pure kinematic or isotropic hardening behavior, but has predicted a
combined translation (kinematic hardening) and distortion of the yield surfaces in the direction
of loading. '

The micromechanical approach commonly used to analyze the elastic-plastic behavior of
polycrystals assumes that they are an assemblage of equal anisotropic monocrystals (single
crystals) randomly oriented in space. This results in an isotropic polycrystal if the spatial
distribution of the orientations is statistically uniform. A monocrystal has n sliding planes with
each plane having m sliding directions, and with every sliding direction corresponding to a pair
of parallel yield planes in stress space. In the limiting case in which an infinite number of
possible crystal orientations is assumed, this infinitely sided polyhedron becomes a curved yield
surface.




Plastic strain in the aggregate is caused by sliding of one of the sliding planes occurring in a
family of similarly oriented crystals. After sliding has occurred in a number of these families,
each surface of the polyhedron mentioned above expands and shifts differently. These sliding
directions are all more or less parallel to the direction of the plane of the maximum shear stress
acting on the aggregate. As the aggregate is loaded further beyond the elastic range, more
crystals and crystal families slide, and increasingly more yield planes pass through the loading
point on the yield surface. The yield planes of different orientations intersect at that point on the
yield surface and form a corner or vertex.

This vertex is not easily observed during testing. One reason is that the very large number of
monocrystal orientations smooths the effect, which appears as a "smooth vertex" or distortion of
the yield surface in the direction of loading, rather than a sharp corner. This distortion of the
yield surface associated with the vertex reflects the "memory" the material has of prestraining in
the direction of loading. The existence of this yield surface distortion in metals has been
observed experimentally by a number of researchers in several polycrystalline aggregates,
including aluminum alloys, brass and magnesium (Naghdi et al. 1958, Phillips 1968, Kelley and
Hosford 1968, Phillips et al. 1970, Shiratori et al. 1976, Helling et al. 1986).

The late Professor Phillips developed a testing procedure to seek and compute the initial and
subsequent yield surfaces of aluminum and their motion in stress space (Fig. la). This
procedure is now widely used in experimental plasticity studies of metals and metal matrix
composites (Rousset 1985, Stout et al. 1985, Dvorak 1987, Dvorak et al. 1988). The experiment
are typically conducted by applying a combination of tensile and torsional shear stresses to a
hollow cylindrical specimen. In these tests, the loading stops and reverses as soon as a point on
the yield surface is reached, as defined by a certain deviation from the linear portion of the
stress-strain curve. Then the small strain loading (probe) continues until another point on the
surface is reached, the load is then reversed, and then increased until enough points have been
obtained to accurately define the yield surface (locus). Fig. 1b clearly shows the characteristic
distortion of the yield surface in aluminum in the direction of loading. While the yield surface
(for a given temperature ) in the T~G, space is an ellipse, the subsequent yield surfaces have
distorted and become pointed in the direction of loading (a), while becoming flatter in the
opposite direction (b). As a result, the size of the yield surface shrinks in the direction of
loading while staying constant in the other direction.

Laboratory results such as these have made possible the linking of the micromechanical theory
with experiments (Stout et al. 1985, Helling et al. 1986), and have led to a new family of
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constitutive laws (Phillips and Weng 1975, Eisenberg and Yen 1981, 1984, Yen and Eisenberg
1987) which incorporate the above findings.

1.3 Modelling of Granular Soil

The behavior of a sand aggregate is similar to that of a polycrystal, since the individual groups
of grains or grain packings within the sand may be considered in first approximation to behave
like randomly oriented crystals. The main difference is that the properties of these packings are
now pressure dependent. For example, a simple cubic array of equal spheres is a pressure
dependent monocrystal having three sliding planes (n=3), with each sliding plane containing two
sliding directions 90° apart (m=2).

As in the case of polycrystalline aggregates, each sliding plane in each of the packings
corresponds to a pair of parallel yield planes in stress space. The macroscopic yield surface of
the material is the surface bounding the yield polyhedron, the sides of which are formed by the
intersection of these yield planes. Plastic strain, defined as irrecoverable deformation, is the
result of a slide in at least one of these packings. This is directly analogous to the definition of
yielding in metals where plastic strain is caused by a slip in one of the slip systems and the term
"sliding" in soils is the equivalent of "slip"” in metals. However, soils exhibit nonlinear inelastic
stress-strain behavior even at small strains which is the result of the force-deformation
nonlinearity at the interparticle contacts. Nevertheless, granular soils experience little or no
sliding between particle contacts and thus exhibit nondestructive behavior and no dilation up to
the so called "threshold shear strain”, ¥, (1X10#<y< 2X10#; Dobry et al. 1982). Therefore, in
granular soils, loading below the threshold has some important features in common with elastic
loading in metals before the initial yield surface is reached. In soils the loading below ¥, though
nondestructive, is inelastic and does include some plastic yielding due to localized slipping
within the intergranular contact areas. If this localized slipping effect below ¥, is neglected in
first approximation, one possible definition of an initial yield surface in cohesionless soils could
be the surface in stress space where ¥, is reached, that is approximately at strains of less than
2X10+.




2. NUMERICAL METHODS AND PROGRAM CONBAL-P

2.1 General

The development of a realistic computer program to simulate granular media by random arrays
of elastic, rough particles presupposes a number of steps and decisions related to: shapes, sizes,
properties and initial spatial distributions of grains, boundary conditions, force-deformation law
between two adjacent particles in contact. A numerical scheme needs to be chosen which will
allow for individual grain interactions and rearrangements including disappearance of old
contacts and formation of new ones. In what follows, some of the solutions provided by the
authors in development of their method and associated computer code are discussed.

The problem of the contact of two elastic, elliptical semi-infinite bodies subjected to a normal
force was first studied by Hertz (1882). Hertz demonstrated that the normal force-deformation
behavior at the contact is nonlinear elastic. Cattaneo (1938), Mindlin (1949) and Mindlin and
Deresiewicz (1953) addressed the problem of the contact of two identical elastic, rough spheres
subjected to a combination of normal and tangential forces and presented a number of closed
form solutions for each of several specific load histories.

Seridi and Dobry (1984) and Dobry et al. (1991) developed a numerical solution for the
force-deformation behavior of two elastic, rough spheres in contact under a combination of
arbitrarily varying normal and tangential forces, which was then coded as program CONTACT.
This model is based on the incremental theory of plasticity, uses an infinite number of yield
surfaces (which correspond to an infinite number of contact annuli) and assumes kinematic
hardening (Fig. 2). Therefore, its main features are very similar to those of the plasticity
stress-strain models for engineering materials described previously.

The numerical solution described previously, implemented in computer program CONTACT
was subsequently tested to verify that it reproduces accurately the analytical solutions obtained
by Mindlin and Deresiewicz (1953). Once this was done, program CONTACT was made a
subroutine which could be used in Finite Element and Discrete Element (Cundall and Strack
1979) simulations.




2.2 The Discrete Element Method

Many studies have been performed using particulate models to interpret and model the behavior
of cohesionless soils and other granular materials. Most of these investigations have been also
included measurements in actual granular soils, as well as in regular or random arrays of spheres
(3-D) or disk/rod assemblies (2-D); a number of them have dealt with the load-deformation
characteristics at the contact between two elastic bodies possessing friction.

Of special interest are the investigations which have studied the stress-strain behavior of granular
arrays considering the elasticity of the particles and the corresponding compliances at the
contacts (Duffy and Mindlin 1958, Duffy 1959, Deresiewicz 1958, Walton 1987, Petrakis and
Dobry). Serrano and Rodrigues-Ortiz (1973) suggested a method for generating a random
configuration of unequal disks or spheres having a prescribed grain size distribution. Cundall
and Strack (1979) used a similar approach in conjunction with their distinct element method to
successfully simulate the mechanical behavior of arrays of disks and spheres under a variety of
loading conditions. In their method, an explicit finite difference formulation is used to
determine the static response of the array to applied strains (program TRUBAL) or boundary
displacement (program BALL). .

Program TRUBAL uses a periodic space in a form of a cube (3-D) or square (2-D), to minimize
the effect of boundaries and allow a relatively small number of particles. A uniform strain field
is applied to all particles and the corresponding contact forces are calculated from the relative
displacements between neighboring spheres. As illustrated by Fig. 3, these contact forces, P,
produce in each spheres a resultant unbalanced force XP, and unbalanced moment XM,, which
induce linear and angular accelerations to the particle. These acceleraticns are used in tum to
compute new particle position at the end of a time increment, t, and new contact forces. The
process is repeated until static equilibrium is achieved ( ZP, = ZM, = 0). The method has the
advantage of decreasing substantially the required computer memory, as no large stiffness
matrices need to be calculated and inverted. However, the execution time is large due to the
great number of iterations needed to assure static equilibrium. Initially, TRUBAL was using a
linear, non-pressure dependent law to describe the force-deformation behavior at the interparticle
contacts; a later version of the program (Zhang and Cundall, 1986) used a linear,
pressure-dependent force-deformation relationship.

The existing force-deformation law at the interparticle contacts in program TRUBAL was
modified by the rigorous numerical solution to the contact problem (subroutine CONTACT). To




do this, a new array was introduced in TRUBAL which stores the 1oad history at each contact
(information on the yield surfaces, elastoplastic moduli, position of apexes, force point etc). The
addition of this complex and computationally intensive nonlinear force-deformation law at each
interparticle contact increased the computational demands of the program which could no longer
be feasible to run on a regular computer. A preliminary study shows that by adding this
complex force-deformation law to the program, the computation time increases by a factor of
six.

As a result of this, the program was further modified by vectorizing the code to run efficiently
on a supercomputer with vector facilities. Recently the code has been parallelized as well, so as
to take advantage of a computing environment of six processors. As shown in Fig. 3, since each
sphere is treated individually, cifferent contact forces between two different spheres can be
calculated simultaneously. To achieve this, the specimen is divided into different zones and the
contact forces between different spheres in different zones are calculated at the same times.
Calculations in each zone is assigned as a sub task for each of the six processors of the
supercomputer used in this study (IBM 3090-600E). For a loading simulation of a very small
3-D specimen (104 spheres), the parallel code in the six processor environment of the Cornell
National Supercomputer Facility runs more than twice as fast (in real clock time) as it would run
if only one processor was used. The CPU time increases, as expected (see Table 1).

TABLE 1
Processing Mode CPU time Clock time
Serial (vector) 141 min . 210 min
Parallel (6 processors) 140 min 60 min

This performance increase is more dramatic and the computational efficiency improves when
larger specimens (more spheres) are used. This new modified program is named CONBAL-P
which is essentially a version of TRUBAL incorporating CONTACT and optimized for the
supercomputer. Therefore, CONBAL is very similar to original program TRUBAL, except that
now the effect of the normal force at the intergranular contacts is included and rigorously
modelled. The program CONBAL-P can run in 2-D, in which case the behavior of a monolayer
of spheres whose centers lie on the same plane is analyzed, or in 3-D where the behavior of 3-D
assemblies of spheres is modelled. Program CONBAL-P has been requiring up to 150MB of
primary memory storage to run (depending on the complexity of the loading case and the
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complexity of the law modelling the contact behavior) and the computation time for a typical job
is 6 CPU hours (vector) on an IBM-3090-600E for a 2-D simulation and 18 CPU hours for a 3-D
simulation utilizing the full Mindlin solution without considering particle rotation.

Since the interparticle force-deformation relationships developed by Cattaneo (1938), Mindlin
(1949) and Mindlin and Deresiewicz (1953) apply only to spheres of the same size and
properties, only random arrays of equal and moderately unequal spheres were developed and
studied. Subroutine CONTACT, and thus CONBAL-P can in principle analyze only random
arrays of equal spheres; however, the same program, with certain assumptions, can handle in
first approximation moderately unequal spheres of the same material. Moreover, the same
analytical solutions do not consider rolling of the spheres; consequently rolling is not permitted
in the present version of CONBAL-P where the fully nonlinear contact model is utilized. In the
case that rotation is not allowed, the coefficient of friction of the material of the spheres has been
reduced accordingly (Rowe 1962). A second version of the program allows for particle rotation
and a simplified contact model is used, which assumes only one diameter of the contact annulus
(sliding - no sliding condition using one yield surface in subroutine CONTACT). This program
takes considerably less time to run and has been running on workstations as well.

The accuracy of CONBAL-P has been checked by comparing its results at both small and large
strains t0 a number of available analytical solutions with excellent agreement for both static and
cyclic loading under a number of boundary conditions.

The simulations using CONBAL-P can be of great importance to granular media research,
because the provide detailed information on any micromechanical variables, such as the
distribution of contact angles, the distribution of the mobilized angle (the angle between the
shear force and contact normal), the average number of contacts per sphere (coordination
number, CN) and their evolution with loading. These simulations can give the same information
that Magnetic Resonance Imaging (MRI) would give if applied to a laboratory specimen. The
micromechanical information could then be used to interpret the macroscopic behavior.
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3. NUMERICAL SIMULATIONS

3.1 Monotonic Loading Simulations

As a first step, it was decided to start simulating phenomena in the small strain range (106 <y<
10-3), and at a later stage focus on the large strain (y, > 10%), fully nonlinear inelastic
macroscopic behavior. Moreover, it was also decided to compare the results of CONBAL with
answers obtained using analytical (Self Consistent, Petrakis and Dobry 1991) and numerical
(nonlinear Finite Element, Petrakis and Dobry 1991) procedures developed, as well as with
experimental data in the literature and on glass beads presented in Volume II. Results of small
strain parametric studies on two 2-D random arrays of spheres, one with 477 equal particles and
area porosity (calculated on the plane passing through the sphere centers) n = 0.154 and the other
with 531 particles with a ratio of radii R,/ R, = 1.5 and area porosity n = 0.182 appear in Petrakis
et al. (1989). Parametric studies on a 3-D array of 104 particles with R/ R, = 1.5 and porosity n
= 0.359 appear in Ng and Dobry (1990).

The geometrical configuration of the 477 equal particle array subjected to an isotropic confining
pressure G, = 91 KPa is shown in Fig. 4. The configuration of the 531-particle array under ¢, =
132 KPa is shown in Fig. 5. In both figures the circles represent the spheres and the rectangles
the relative magnitude and direction of the contact force. There are four different rectangle
widths, with each one of them corresponding to a range of forces between four equal fractions of
the maximum computed contact force. For example, if the maximum contact force is F KN, the
narrowest rectangle stands for the range of forces between 0 and F/4 KN, the next wider
rectangle for the range of forces between F/4 and F/2 etc. This notation will be used throughout
this report whenever results from the discrete element method are pi'esented.

Figure 6 depicts the geometric configuration of the 3-D 395-particle array under o, = 131 KPa.
In this figure, the difference in color particles identifies their sizes. The 395 sphere 3-D array
with the particles assigned the properties of the glass beads used in the experiments of Volume II
(Shear Modulus G, = 30 GPa, Poisson's ratio, v, = 0.15 (instead of 0.21), friction coefficient =
0.32) was first subjected to an isotropic confining pressure 6, = 140 KPa and then the vertical
stress, 0, = O,,, was increased while the mean stress was kept constant by unloading the lateral
(horizontal) stresses, @,, = G,,. This is analogous to a laboratory triaxial compression test on a
glass beads where the mean stress is kept constant by reducing the lateral stress (cell pressure) G,
= 0, = 0,. The loading was stopped at a octahedral shear strain level v, = €,-€, = 0.3%. The
macroscopic stress-strain curve resulting from this simulation appears in Fig. 7a, where the
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octahedral shear stress is plotted versus the octahedral shear strain. The volumetric strain
appears in Fig. 7b, where it is plotted versus the octahedral shear strain. The same two plots
include data from laboratory experiments on glass beads performed as part of this research and
presented in Volume II of this report.

The issue investigated is the micromechanical mechanisms controlling the movement and
distortion of the yield surface of a granular medium during loading. Analytical considerations
and laboratory results presented in Volume II of this report indicate that the yield surface of a
granular medium distorts in the direction of loading in a manner analogous to that of
polycrystalline aggregates (metals) discussed earlier. In order to investigate the nature these
early macroscopic findings and to gain insight into the micromechanical processes occurring at
the contact level that shape the macroscopic behavior, a series of 2-D and 3-D numerical
simulations were performed using program CONBAL and CONBAL-P, on the 477 and 531
particle 2-D arrays without rotation and on a 395 particle 3-D array with rotation. The stress
paths along which these numerical simulations were performed are very similar to those
proposed by Phillips and his co-workers and are shown in Fig. 8. Since the numerical
simulations in contrast to the laboratory experiments are strain-controlled, all points were first
defined in stress space and then their positions were translated to stress space.

The "yield criterion" used was the stress corresponding to a change in the value of octahedral
shear straiv, ¥, , of 0.024% measured between the point from which the probes start and any
point on the yield locus. The procedure has been identical to that used in the laboratory
experiments and described in detail in Volume II. The value of y,., used is not very different
from the value for the threshold strain, ¥, observed in sand, 0.01 < ¥, < 0.02%, discussed earlier
in this volume. The numerical media were prestrained to a point in strain space (point 1 in Fig.
8) and then they were unloaded to point 2 which was at a distance from point 1 that was equal to
twice the criterion of octahedral strain used (y,, = 0.024%). It was then reloaded by 0.024%
from point 2 to point O'. Point O' was used as the reference point for all subsequent small strain
loading (probes) to establish the shape of the subsequent yield locus. The rest of the points were
obtained by starting from O' and by probing in all directions; this is illustrated in Fig. 8 where
the numbers of the points are in the order used to obtain those points. At this small strain level
of probing, few inelastic deformations which are the result of geometric changes in the array are
expected in the medium after probing from point O'. However, most, if not all, nonlinearity in
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the macroscopic stress-strain behavior at this small strain level is expected to be the result of the
nonlinear force-deformation behavior at the interparticle contacts.

The 531 array was consolidated to 132 KPa, and then two series of calculations simulating four
tests on four initially identical numerical "specimens” were conducted in which the array was
prestrained in i) compression to two different strain levels, and ii) in shear to two different strain
levels. All four "specimens" were prestrained first to Y= 0.98% and then to y__ = 2.33 %.
The mean stress was kept constant to ¢, = 132 KPa throughout each simulation.

Figure 9 portrays the results of the 2-D simulations on the 531 particle array in the 1,,, (G,,-C,,)
stress space. There are four yield surfaces in this figure, the circular being the initial surface
defined by four separate monotonic simulations. The "subsequent" yield surfaces correspond to
prestraining to two strain levels, Y., = 0.98% and 2.33% as marked in two directions
(compression, G,,-0,, , and shear, T,, ). It can be seen that there is a significant change in the
shape of the prestrained yield surface: it has shortened in the direction of loading while its
dimension in the other direction has not changed. Moreover, this shrinking of the yield surface
increases with increasing prestraining. Finally, the surface became flatter in the direction
opposite to the direction of loading. While the initial surface has a diameter of 10.6 KPa, the
width of the first subsequent locus in the compression direction has decreased to 5.4 KPa and
that of the second to 4.8 KPa.

The 477-particle array was consolidated to 6, = 91 KPa and then the same procedure as in the
531 particle array was followed. The array was prestrained to ¥ .= 0.99% then to y_, =2.0%.
The mean stress was kept constant to 6, = 91 KPa throughout the simulation. The yield surfaces
obtained on the 477-equal sphere array are shown in Fig. 10. Again there are five yield surfaces
in this figure, the circular being the initial surface defined by the four separate monotonic
simulations. Two of the other yield surfaces correspond to the yield loci obtained after the array
was prestrained in compression at y_, = 0.99% and 2.0% respectively, while the other two to
those obtained after the array was prestrained in shear at w,, =0.98% and 2.3%. All subsequent
yield surfaces have shortened in the direction of prestraining, with the width of the surface
decreasing as the straining increases. The surfaces have become pointed in the direction of
loading and flatter in the opposite direction. The width of the surface in the direction
perpendicular to the prestraining direction has not changed. These observations are in good
general agreement with the results on the 531 particle array (Fig. 9), but the results are not as
smooth or symmetric. This should be attributed to the fact that the 477 equal particle array is
not statistically uniform due to crystallization (Fig. 4). This crystallization has lumped the array
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into N constituents, where N is the number of different packings within the aggregate, and thus
has increased the characteristic size of the smallest constituent, from the diameter of the particle
to the dimension of the crystalline region. As a result, the array is not completely isotropic
under isotropic stress and a much larger number of spheres than 477 is needed in order to have a
uniform spatial distribution of the crystallized regions and achieve a statistically isotropic
medium.

The 395 3-D array was prestrained to ¥,, = 0.25% and the subsequent yield locus (surface) was
obtained by following the same stress paths as in Fig. 8. In this simulation the particles were
allowed to rotate and a simplified contact model was used to model the interparticle force
deformation behavior. The yield surface obtained appears in Fig. 11 together with the initial
locus which was obtained from radial monotonic proportional tests. It can be seen that while the
locus has distorted and developed an apex in the direction of loading it has become flatter in the
opposite direction. Its width in the direction perpendicular to prestraining has remained
approximately the same, indicating that there is a minimal cross-effect.

3.3 Micromechanical Observations

The results of these three simulations are in good qualitative agreement with the laboratory data
presented in Volume II and are very similar to the yield surfaces obtained in aluminum by
Phillips (Fig. 1). As can be seen in Fig. 1, the yield locus (surface) of aluminum distorts in the
direction of loading by forming an apex at the loading point and by becoming flatter in the
opposite direction. The width of the surface remains the same. While the exact mechanism of
the yield locus distortion in metals is not precisely known, it is quite possible that after
prestraining, many of the dislocations are pinned at obstacles and are no longer mobile in the
forward strain direction (Helling et al. 1986). The resulting high strain gradient elevates the
yield point in that direction. When the loading is reversed, these dislocations become mobile
again, the yield point is reached easily and the yield locus flattens in that direction. If the
loading is continued along a path perpendicular to the prestrain direction, the mobile dislocation
density is low and the yield locus cannot be reached easily. Since the prestraining has not
mobilized dislocations in that direction, the yield point should be at approximately the same
point as the yield point on the stress free material, and in this direction the yield locus should
remain at the same point.

The case of granular medium is in a way similar, although large strains in soils are an order of
magnitude smaller than in metals. Despite the fact that granular media properties are mean
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stress-dependent, this effect can be discounted if the experiments/simulations are performed at
constant mean stress. At each of the points in these series of simulations a wealth of statistical
information has been accumulated at every point on the surface. Figures 12, 13, 14 and 15
present selected statistical information at the initial state before prestraining and at points 1, 2,
and 3 respectively on the 2-D yield locus of Fig. 9. This information includes the distributions
of 1) contact angle, ii) normalized mobilized angle, iii) coordination number (number of contacts
per particle) and iv) the distribution of the contact force. The normalized mobilized angle is
the angle between the contact force and contact normal normalized by the angle of friction.
Therefore, when the normalized mobilized angle is equal to 1, particles are sliding, and if it is
equal to 0 contacts are subjected only to a normal force. The difference in signs indicates a
different force direction.

As can be seen by the distribution of contact angle in Figs. 12, 13 and 14 there is a clear
geometric texture (fabric anisotropy) developing in the direction of prestrain compared to the
initial state of the material (Fig. 12). The fabric at this point is controlling the subsequent
"yield" behavior of the material, since the strain probes from point O' defining the yield locus
(surface) use a strain low enough (Y, = 0.02%) that cannot cause significant geometric changes
to the fabric of points on the locus. Consequently, the distribution of the contact angle is very
similar for all points on the yield surface (Figs. 13, 14, 15).

The distribution of the normalized mobilized angle is very different from point to point. While
the number of spheres sliding does not change significantly (both the coordination number and
the number of normalized mobilized planes equal to 1.0 remains the same), what changes
dramatically is the distribution of both the mobilized angle and contact force that controls the
contacts that will be sliding. For example, when the sample was loaded in compression, contacts
were created in the direction of the major applied principal stress while they were lost in the
other directions. The Distribution of the mobilized angle and contact force changed accordingly.
Consequently, when point 1 was reached and an anisotropic fabric has been created. Once the
loading is reversed and the force redistribution takes place, it is easier for the sample to yield in
the direction opposite to the loading, due to the texturing which has occurred in the direction of
loading. This can be observed through the geometry of the numerical sample at both points
(Figs 16 and 17).

The distributions of the normalized mobilized angle at points 1 and 2 are very similar to being
the mirror image of the other. This suggests that the forces at the particle contacts have changed
sign or reversed direction. Moreover, the fact that the specimen geometry has not changed
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significantly between these two points, indicates that there are no (or very few) spheres that slid
between points 1 and 2. Therefore, there is slipping (or rubbing), but not sliding, at the
interparticle contacts along the same “paths” that sliding occurred during loading to point 1.
Since there are no pinned sliding systems, there are no deformation gradients and the yield locus
flattens.

When the sample is loaded by a small strain shear probe, the mobilized angle distribution is
analogous to that of the sample before prestraining. This, coupled with the fact that this
direction of loading is orthogonal to the prestraining direction no sliding systems have been
activated in this direction, results in a yield point similar to that of the original sample.
Consequently, the size of the surface does not change perpendicular to the direction of
prestraining.

The same is true for the 477 equal particle array as can be seen from the analysis of the
geometrical and statistical information presented in Figs. 16-20 for points 1, 2, and 3 on the
yield locus of Fig. 9.

The nonlinear distinct element method has been very useful in predicting, as well as interpreting
aspects of the behavior of granular medium which could not be determined otherwise. They
could not be determined by a distinct element procedure using a linear, non-pressure dependent
force deformation law at the interparticle contacts, since this program would be unable to
capture the redistribution of contact forces which occur during loading. Nor could these
simulations be performed without a supercomputer, since the calculation-demanding relaxation
scheme used in the distinct element method, burdened by a nonlinear plasticity program at every
contact, could not be solved on a regular computer. As an indication of the complexity of the
computations, the CPU time needed to construct Fig. 8 or Fig. 9 was approximately 30
CPU-hours on the IBM 3090-600E. Therefore, as previously hypothesized by the authors, the
nonlinear behavior of the granular medium is a result of the particulate nature of the medium and
can not be interpreted or reproduced analytically unless this particulate nature is fully modelled
and taken into account.
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4. CONCLUSION

Nonlinear discrete element simulations have been used to provide an insight on the nonlinear
modelling of granular soil. These simulations were based on an incremental solution to the
nonlinear problem of two spheres in contact (program CONTACT), incorporated into discrete
element TRUBAL which was further optimized for vector and parallel processing on the IBM
3090 supercomputer. It has been found that this approach not only interprets successfully the
nonlinear behavior of soil, but also provides a wealth of information on the fabric changes
during loading. The yield surface of a granular medium, needed for defining the constitutive
relation of such a medium, distorts by forming an apex in the direction of loading while
becoming flatter in the opposite direction. This is contrary to the practice followed in modelling
granular media where the yield surface of soils are typically assumed to retain the same shape.
The origin of this distortion phenomenon lies in the texturing (or fabric anisotropy) which occurs
in the direction of prestraining, as well as in the redistribution of interparticle contact forces in
the absence of significant particle movement during the small strain probes needed to define the
yield surface. These phenomena cause certain slip systems to be activated which in turn produce
the characteristic apex which appears in the yield surface in the loading direction. Therefore, the
distribution and magnitude of the contact forces are critical for a good understanding of the
macroscopic response of the medium. Accurate modelling of the contact force distribution can
be achieved only if the behavior at the contact is fully understood and rigorously modelled.
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Fig. 1a. Loading paths for (a) initial, and (b) subsequent yield surfaces (Phillips 1968)
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Fig. 1b. Experimentally obtained initial and subsequent yield surfaces for aluminum at different
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Figure 3. Main Features of the Discrete Element Method
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the properties of quartz, subjected to isotropic compression. This figure represents the "element"
of the periodic space.




Fig. 6. Initial configuration of the 3-D random array of 365 elastic, rough spheres with three

radii.
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Fig. 11. Initial and subsequent yield loci obtained for the 365 particle 3-D array. Prestraining as
indicated.
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Fig. 12. Statistical Information regarding the state of the 531 particle array of Fig. 5 under

isotropic pressure, 6, = 132 KPa.
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Fig. 14. Statistical Information regarding the state of the 531 particle array of Fig. S at point 2
on the yield surface of Fig. 9.
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Fig. 15. Statistical Information regarding the state of the 531 particle array of Fig. § at point 3
on the yield surface of Fig. 9.




Fig. 16. Geometry and contact force distribution of the 531 particle array of Fig. 5 at point 1 on
the yield surface of Fig. 9.
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Fig. 17. Geometry and contact force distribution of the 531 particle array of Fig. S at point 2 on
the yield surface of Fig. 9.
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Fig. 18. Statistical Information regarding the state of the 477 particle array of Fig. 4 at point 1
on the yield surface of Fig. 10.
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Fig. 19. Statistical Information regarding the state of the 477 particle array of Fig. 4 at point 2
on the yield surface of Fig. 10.
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Fig. 20. Statistical Information regarding the state of the 477 particle array of Fig. 4 at point 3
on the yield surface of Fig. 10.
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Fig. 21. Geometry and contact force distribution of the 477 particle array of Fig. 5 at point 1 on
the yield surface of Fig. 10.
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Fig. 22. Geometry and contact force distribution of the 477 particle array of Fig. S at point 2 on
the yield surface of Fig. 10.




